University of Pécs Institute of Pharmaceutical Technology and Biopharmacy Laboratory education	Pages: 1/1 Practice number : D.III.i.1.5				
Task: Mixing of solid materials (rotation speed)					
Group:	Responsible for worksheet:				
Practice supervisor :	Date:				

D.III. i. 1.4-5.

Mixing of solid materials

Introduction/Object: Homogeneity of binary or multicomponent system is guaranteed by proper mixing of solid materials. This procedure is often necessary during the preparation of solid dosage forms, i.e. granules in a pharmaceutical technological manufacturing. Proper distribution of individual granules/grains/substances is largely affected by the applied apparatus, grain size of mixed materials, time and intensity of mixing.

Performing the practice:

- 1. Measure the prescribed amount inert powder.
- 2. Measure and sieve sodium hydrogen carbonate/potassium chloride trough 0.80 mm (V.) sieve.
- 3. Fill the substance and the inert powder into a cubic mixer.
- 4. Adjust the rotation speed according to the worksheet and start the mixing.
- 5. Take 1,00 g sample at the given time (always from the same place)
- 6. Dissolve the sample in 50.0 ml distilled water, then filter the samples after dissolution.
- 7. Measure the conductivity of filtrate using a conductometer.

Assessment:

Illustrate the conductivity in function of time.

Aim of practice: Proper distribution of individual granules/grains/substances is largely affected by the applied apparatus, grain size of mixed materials, time and intensity of mixing.

Purity and quality of tools:

Tools	Qual	Qualification		
	Appropriate	Inappropriate	Controller's signature	
Patendula				
Erweka cube-mixer				
Volumetric flask				
OK-104 mobile conductometer				
Plastic card				
Filtering/filter paper, funnel /				

Measuring: Practice supervisor gives the usable substances one of the following: NaHCO3 or KCI

Substance	Diameter	Measurand [g]	Measured [g]	Who	Checked by
				measured	
Inert	1,2-0,8 mm				
powder					
	0,32-0,16 mm				

Mixing: 20, 25, 30, 35, 40, 45, 50, 60/min. rotational speed

Measuring : Dissolution 1,00 g sample in 50,0 ml distilled water, filtering (if it's needed), detection of conductivity.

	60 rotational speed /min.		120 rot.speed/min	
time	conductivity	concentration	conductivity	concentration
(min.)	[mS/cm]	(%)	[mS/cm]	(%)
2				
5				
10				

Assessment:

Illustrate the conductivity in function of time.