Organic molecules, structure and function

From the Chemistry Exam to the Final Exam in Biochemistry

Dr. Lengyel Anna

$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{OH}$
 Organic|reactions
 $$
\mathrm{CH}_{3}-\mathrm{Cl}+\mathrm{NaOH} \rightarrow \mathrm{CH}_{3}-\mathrm{OH}+\mathrm{NaCl}
$$

$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{3}+\mathrm{H}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

REDUCTION
+2 , H^{\prime} or -1, O^{\prime} Anabolic processes

Types: electrophiliq, nucleophilic or radical
ADDITION $(2 S \rightarrow 1 \mathrm{P})$
least 2 molecules combned

SUBSTITUTION (2S $\rightarrow 2$ P)
one ator (or atomic group) in the mplecule exchanged

OXIDATION

$-2, \mathrm{H}^{\prime}$ or $+1, \mathrm{O}^{\prime}$ Catabolic processes

$$
2 \text { molecules combined by }
$$

$$
\mathrm{CH}_{3}-\mathrm{CH}_{3} \rightarrow \mathrm{HC} \equiv \mathrm{CH}+2 \mathrm{H}_{2}
$$

forming small byproduct as water or Pi

Organic molecules

Alkanes: saturated aliphatic hydrocarbons $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$

- Substitution - e.g. with halogens $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3}-\mathrm{Cl}+\mathrm{HCl}$
- Combustion - e.g. $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$

Cycloalkanes: saturated hydrocarbons with at least one ring $\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 n}$

- Same behavior as alkanes, but addition is also possible e.g. with halogens
Alkenes, alkynes: unsaturated hydrocarbons containing C-C double bond $\mathrm{C}_{n} \mathrm{H}_{2 n}$ or C-C triple bond $\mathrm{C}_{n} \mathrm{H}_{2 n-2}$
- Electrophilic addition (saturation) with hydrogen, water, hydrogen halides or halogens
- Oxidation with peroxide to epoxides, with permanganate to vicinal diols
Types: polyenes with cumulative, conjugated or isolated double bonds Polymerization e.g. polyethylene or polymethyl methacrylate

Organic molecules

Aromatic hydrocarbons: have planar ring with completely conjugated double bond system, the number of π electrons equal $4 n+2(n=0,1,2, \ldots)$ following Hückel's rule

- Only electrophilic substitution is possible with catalysts
E.g. bromation (halogenation), nitration, sulphonation, alkylation, acylation

Nitro group: meta director

Methyl-group:	ortho- bromotoluene	meta-	para-
o- , p- director (also amino groups)	$\mathbf{4 0} \%$	(in traces)	$\mathbf{6 0} \%$

Organic molecules

Hydroxy compounds

- Alcohols: hydroxy-derivatives of the hydrocarbons, the group is connected to a carbon with 4 single bonds
- Enols: the OH -group is connected to a carbon atom with a double bond ($\mathrm{C}=\mathrm{C}$)
- Phenols: the OH-group is connected directly to carbon which is part of an aromatic ring
- Aromatic alcohols: the OH-group is connected to a carbon with 4 single bonds but the molecule contains an aromatic ring as functional group

Organic molecules

Alcohols:

Primary - secondary - tertiary alcohols
Monovalent - Divalent (Diol) - Trivalent (Triol) - Polyol
Typical reactions:
Oxidation

ALCOHOL	Primary	Secondary	Tertiary
Mild oxidation	aldehyde	ketone	no reaction
Strong oxidation	carboxylic acid	no reaction	-

Elimination - with strong acids to form alkenes (Zaitsev's rule: the most substituted double bond/product is favored; H is removed from the C which had originally less H)
Nucleophilic substitution e.g. with HCl
Ether formation R-O-R'

Organic molecules

Thiols (mercaptans): R-SH (Sulfhydryl-group)

Similar to alcohols - Mild oxidation to disulfides

- Strong oxidation to sulfonic acids

$$
\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{SO}_{3} \mathrm{H} \nprec \underset{\left(\mathrm{HNO}_{3}, \mathrm{H}_{2} \mathrm{O}_{2}\right)}{\text { Oxidation }} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{SH} \xrightarrow[\left(\mathrm{O}_{2}, \mathrm{~L}_{2}\right)]{\text { Oxidan }} \mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{S}-\mathrm{S}-\mathrm{CH}_{2} \mathrm{CH}_{3}
$$

ethanesulfonic acid ethanethiol diethyl disulfide
Thioether e.g.

Thioester e.g.

Organic molecules

Oxo compounds

- Aldehydes: RCHO, formyl group CHO
- Ketones: RCOR', carbonyl group C=O

Symmetric, asymmetric, aliphatic, aromatic, aralkylketones, endocyclic-exocyclic ketones

Reactions:

Oxidation: aldehydes to carboxylic acids, ketones \varnothing
Reduktion: aldehydes to primary alcohols, ketones to secondary alcohols
Nucleophilic addition with water, alcohols, amines

Organic molecules

Nucleophilic addition with water, alcohol, amine

$\mathrm{HNu} \stackrel{\mathrm{R}}{ } \mathrm{R} / \mathrm{H}-\mathrm{OH} \longrightarrow$ unstable hydrate $\mathrm{HNu}=\mathrm{R}-\mathrm{OH} \longrightarrow$ hemiacetal/hemiketal

+ Substitution with a 2nd alcohol \longrightarrow Acetal/Ketal $+\mathrm{H}_{2} \mathrm{O}$ $\mathrm{HNu}=\mathrm{R}-\mathrm{NH}_{2} \longrightarrow$ (unstable intermediate) Schiff base (=imine)

Question

A glycoside is the carbohydrate form of an
a. ether
b. acetal
c. aglycone
d. alcohol

Aldol reaction

Aldol dimerization or aldol addition: in a basic solution a deprotonated aldehyde serves as a nucleophile and attacks an other aldehyde as an electrophile

$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}$

Fehling's test

$$
\begin{gathered}
2 \mathrm{Cu}^{2+}+\mathrm{R}-\mathrm{CHO}+5 \mathrm{OH}^{-}=\mathrm{Cu}_{2} \mathrm{O}+\mathrm{RCOO}^{-}+3 \mathrm{H}_{2} \mathrm{O} \\
\text { aldehyde carboxylic acid }
\end{gathered}
$$

Tollens's silver mirror test

Organic molecules - carboxylic acids

- R-COOH, carboxyl group
- Acidic dissociation, salt formation
- Decarboxylation
- Reduktion

Histidine
Histamine

- Nucleophilic substitution - amide or ester formation

Organic molecules - carboxylic acids

Special intramolecular reactions:

- Lactone formation (cyclic ester)

- Lactam formation (cyclic amide)

lactam

lactim

double lactim

Phospholipids

Arachidonate
(20:4)
Kalmopyrin
Ca-salt of acetylsalicylic acid
Non-steroids (aspirin)

Prostaglandins Thromboxanes

Steroids inhibit: Prostaglandins Tromboxans Leukotriens

Non-steroids (aspirin) inhibit: Tromboxans

Prostaglandins

Organic molecules

Amines: derivatives of ammonia

- primary amine R-NH2, primary amino group $-\mathrm{NH}_{2}$
- secondary amine R-NH-R, secondary amino group -NHR
- tertiary amine NR_{3}, tertiary amino group - NR_{2}
- quaternary ammonium salts $\mathrm{NR}_{4}{ }^{+}$, quaternary ammonium group - $\mathrm{NR}_{3}{ }^{+}$
$\mathrm{R}=$ aliphatic or aromatic amines
Alkylation with alkyl halogenides
Acylation to amides with esters, anhydrides or acyl halides

Organic molecules

Reaction with nitrous acid:

With primary amines: an alcohol and nitrogen gas are formed HNO_{2}

With secondary amines: nitrosoamines are formed, tertiary \emptyset

$$
\mathrm{CH}_{3}-\mathrm{NH}-\mathrm{CH}_{3} \xrightarrow[\mathrm{HCl}]{\mathrm{NaNO}_{2}}\left(\mathrm{CH}_{3}\right)_{2}-\mathrm{N}-\mathrm{N}=\mathrm{O}
$$

With primary aromatic amines: aryldiazonium salts are formed (Diazotation)

Aryldiazonium ions react with aromatic rings to form azodies (diazo coupling)

Heterocyclic compounds: cyclic chemicals with ring system containing at least 2 different elements, mostly O, S, and N beside C atoms.

NAME	STRUCTURE	PROPERTIES	IMPORTANT PART OF...
Pyrrole		Aromatic, weak acid, planar 5 ring	Porphynes, porphyrins, hemoglobin, B12, bilirubin, cytochromes
Pyrrolidine		Saturated, weak base	Nicotine, proline, hydroxyproline
		Pyrrole+benzene ring, aromatic weak acid	Tryptophan, skatole, serotonin, tryptamine
		Aromatic, weak base, planar 6 ring	Nicotine, B6, B3, nicotinic acid, NAD $^{+}$
Pyrimidine		Aromatic, weak base	B1, bases in DNA/RNA (C,T,U), barbiturates
		Aromatic, amphoteric planar 5 ring	Histidine, histamine
Purine	*	Pyrimidine+imidazole, aromatic, amphoteric	Bases in DNA/RNA(A,G) uric acid, caffeine
	\sim_{N}	Aromatic, weak base	B2, folic acid,

STEREOISOMERS
Same structure, different spatial arrangement

CONSTITUTIONAL ISOMERS
 (Structural isomers)

- Different order of atoms
- Different structural formula
- Usually NOT interconvertible
(Except: cyclic-open form of sugars, rearrangement of vinyl-alcohol to acetaldehyde)
- Different chemical/physical properties

Functional (group) isomers

Chain isomers

Position (Substitutional) isomers

Valence isomers

Tautomers (oxo-enol isomers)

- Different spatial arrangement due to rotation around σ bond
- In cyclic molecules partial rotation, substituents in equatorial position more stable
- ALL cases interconvertible
- Always a mixture of different isomers

Eclipsed vs Staggered

CONSTITUTION:
connection order of atoms

CONFORMATION:
spatial arrangement of a molecule

CONFIGURATION:
spatial orientation of the different atoms/functional groups attached to the

Question

Which of the following physical properties differ for each of a pair of enantiomers?
a. solubility in ethanol
b. direction of rotation of plane-polarized light
c. boiling point and melting point
d. index of refraction

Question

Determine the relationship between the two molecules shown.

a. constitutional isomers
b. enantiomers
c. diastereomers
d. identical molecules

Question

The relationship between the following two structures is:
(A) enantiomers

(B) diastereomers
(C) structural isomers
(D) identical
(E) none of the above

The Contergan scandal

$R(+)$-thalidomide $=R(+)$ Contergan

$\mathrm{S}(-)$-thalidomide $=\mathrm{S}(-)$ Contergan

Thalidomide is a good tranquilizer and sleep aid. It was first marketed in 1957 in West Germany under the trade name Contergan. Primarily prescribed as a sedative or hypnotic, later it was used to treat nausea and to alleviate morning sickness in pregnant women. Shortly after the drug was sold thousands of infants were born with phocomelia (malformation of the limbs).Thalidomide is provided as a racemic mixture of two enantiomers: $\mathrm{R}(+)$-thalidomide is the bioactive form of the molecule, $\mathrm{S}(-)$-thalidomide causes the severe (teratogenic) side effects. Though the enantiomers could be separated, this couldn't solve the problem, because the body converts each enantiomer into the other through mechanisms that are not well understood, so the teratogenic compound remains always present. In 1961 it was taken off the market due to massive pressure from the press and public.
Today, thalidomide is used mainly as a treatment of certain cancers (multiple myeloma) and of a complication of leprosy.

Question

Tautomer of Lactam with $-\mathrm{N}=\mathrm{C}-\mathrm{OH}$ group

Form pairs!

Sugar in milk

Cyclic intramolecular ester

Enzyme LACTONE

Cyclic intramolecular amide

LACTIM

Salt of lactic acid

LACTOSE

Cyclic
intramolecular diester

Milk sugar
cleaving enzyme

Complexes

Definition: Compounds in which a metal atom or ion is surrounded by a number of oppositely (negatively) charged ions or by neutral molecules (called ligands).
Each ligand possesses lone electron pairs (Lewis base) available for donation to vacant orbitals of the metal atom or ion (Lewis acid).
Coordination number: the number of ligand donor atoms or coordinative bonds.

Chelating agents: ligands forming at least 2 coordinative bonds with the same central metal.

donor ligand atom

Summary

Complexes

Complexes

1. complex cation

2. complex anion

Potassium hexachloroplatinate(IV)
3. complex molecule |ron(0)pentacarbonyl= Pentacarbonyliron(0)
Hexaammineplatinum(IV) dhloride
[$\mathrm{Fe}(\mathrm{CO})_{5}$]
\nearrow

Question

Which of the following is true?
A. Hemoglobin is involved in transporting oxygen

B .Myoglobin is involved in oxygen storage
C. Compared to oxygen, carbon monoxide has a higher affinity for hemoglobin
D. A, B and C
E. A and C

Question

What contains 2 alpha chains and 2 beta chains that assume a quaternary higher order conformation?
A. Maternal hemoglobin
B. Myoglobin
C. Immunoglobulin
D. Fetal hemoglobin

Question

What consists of 2 alpha chains and 2 gamma chains?
A. Maternal hemoglobin
B. Myoglobin
C. Immunoglobulin
D. Fetal hemoglobin

Question

What has the highest affinity for oxygen?
A. Maternal hemoglobin without 2,3-bisphosphoglycerate
B. Myoglobin
C. Maternal hemoglobin with 2,3-bisphosphoglycerate
D. Fetal hemoglobin with 2,3- bisphosphoglycerate

Question

When binding with oxygen, what type of binding curve does hemoglobin have?
A. Linear
B. Sigmoidal
C. Hyperbolic
D. It has none

Question

When binding with oxygen, what type of binding curve does myoglobin have?
A. Linear
B. Sigmoidal
C. Hyperbolic
D. It has none

Hemoglobin, myoglobin

Porphyrin is a planar, natural chelator, tetradentate ligand in globins, associated with Fe^{2+} called heme.

Coordination number: 6 Ligands: planar tetradentate porphyrin, globin protein (His), and oxygen molecule Geometry: octahedral

Protein (globin)

In hemoglobin: 4 globin chains, 4 heme, $4 \mathrm{O}_{2}$ In myoglobin: 1 globin chains, 1 heme, $1 \mathrm{O}_{2}$

Question

Which of the following statements describes the oxygen binding curve of hemoglobin?
A. Each of the four oxygens bind with equal facility
B. The binding of the first oxygen molecule enhances the binding of the other three oxygen molecules
C. The binding of the first oxygen molecule makes the binding of the other three oxygen molecules more difficult
D. The binding of the first oxygen molecule has no effect on the binding of the remaining three oxygen molecules
E. Each successive oxygen bound makes the remaining sites less likely to bind oxygen

Question

Under which of the following conditions will hemoglobin bind less oxygen?
A. The pH increases from 7.0 to 7.2
B. The oxygen pressure increases from 500 mm to 1000 mm
C. The concentration of carbon dioxide increases
D. The $2,3-\mathrm{BPG}$ is removed
E. None of the above

Question

Which of the following is in red muscle and consists of a single polypeptide with a prosthetic heme group?
A. Maternal hemoglobin
B. Myoglobin
C. Immunoglobulin
D. Fetal hemoglobin

Hemoglobin, myoglobin

Hemoglobin transports the blood gases in erythrocytes. Myoglobin transports and stores oxygen in myocytes.

The oxygen binding sites are very similar in structure, but the oxygen affinities are different.
Partially because of the cooperative oxygen binding, partially because of the adjusting effect of $2,3 \mathrm{BPG}$ as heterotropic allosteric modulator.

Even in different developmental periods, the hemoglobin subunits are different and so the affinity for oxygen.
Adult: $\alpha_{2} \beta_{2}$, fetal: $\alpha_{2} \gamma_{2}$, embryonal: $\alpha_{2} \varepsilon_{2}$

Hemoglobin binds oxygen by a cooperative mechanism: binding of the first O_{2} molecule initiates allosteric rearrangements and this increases the affinity of the still free heme groups towards O_{2}.
O_{2} binding triggers a transformation from T -state to R -state.
So oxygen is a homotropic allosteric activator of hemoglobin.
CO_{2} binds hemoglobin as a carbamate-group and stabilizes the T-state.

Heterotropic allosteric modulator is $2,3 \mathrm{BPG}$. It binds to the T -state of hemoglobin (deoxyhemoglobin) and stabilizes it so it can not transform to the oxygen-affiner R-state. When $2,3-\mathrm{BPG}$ is bound Hb can release O_{2} at lower partial pressure. $2,3 \mathrm{BPG}$ is produced by the Luebering-Rapoport shunt (pathway coupled to glycolysis) from 1,3-BPG by the enzyme BPG mutase.

An increase in the 2,3-BPG concentration can be observed in the height adjustment: as the O_{2}-saturation in blood decreases, the O_{2} release become more difficult, but the organs would need the same supply, so the body should solve this problem. With producing more 2,3BPG the O_{2} affinity decreases, so the peripheral tissues can get the necessary supply.

Question

What phenomenon occurs when decreased pH causes hemoglobin to release oxygen into tissues?
A. Allosteric effect
B. ELISA
C. Bohr shift
D. Western blotting
E. B and D

The oxygen binding curve is shifted to the left on the horizontal axis by:

- temperature decrease
- increase in pH
- decrease in the concentration of $2,3-\mathrm{BPG}$ in the erythrocytes
- decrease in the concentration of CO_{2} The left shift causes hemoglobin to bind oxygen more strongly.
E.g. in cardiac surgery hypothermia of the patient is necessary to maximally saturate his blood with oxygen. transporter.

Bohr effect describes how the affinity of hemoglobin towards O_{2} decreases when the pH decreases or the CO_{2} concentration increases.
Together with the cooperative binding of O_{2} and the influence of $2,3-\mathrm{BPG}$, this property ensures the optimal functioning of hemoglobin as an oxygen

The oxygen binding curve is shifted to the right on the horizontal axis by:

- temperature increase
- decrease in pH
- increase in the concentration of $2,3-\mathrm{BPG}$ in the erythrocytes
- increase the concentration of CO_{2} The shift to the right causes hemoglobin to release oxygen more easily.
E.g. a working muscle consumes a lot of O_{2} for contraction. Since it converts the energy partially into heat, the temperature rises in the working muscles. It also releases lactic acid so the pH drops. As a result of the increased metabolism, more CO_{2} is produced: due to the local effects, the muscles can extract more O_{2} from the blood.

Question

When will hemoglobin have the highest affinity for oxygen?
A. When pH is low
B. When carbon monoxide levels are high
C. At high elevations
D. When 2,3-bisphosphoglycerate levels are low

